Polar decomposition and Brion’s theorem

نویسندگان

  • Christian Haase
  • CHRISTIAN HAASE
چکیده

In this note we point out the relation between Brion’s formula for the lattice point generating function of a convex polytope in terms of the vertex cones [Bri88] on the one hand, and the polar decomposition à la Lawrence/Varchenko [Law91a, Var87] on the other. We then go on to prove a version of polar decomposition for non-simple polytopes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding the polar decomposition of a matrix by an efficient iterative method

Theobjective in this paper to study and present a new iterative method possessing high convergence order for calculating the polar decompostion of a matrix. To do this, it is shown that the new scheme is convergent and has high convergence. The analytical results are upheld via numerical simulations and comparisons.

متن کامل

The interplay of the polar decomposition theorem and the Lorentz group

Abstract: It is shown that the polar decomposition theorem of operators in (real) Hilbert spaces gives rise to the known decomposition in boost and spatial rotation part of any matrix of the orthochronous proper Lorentz group SO(1, 3)↑. This result is not trivial because the polar decomposition theorem is referred to a positive defined scalar product while the Lorentz-group decomposition theore...

متن کامل

Beck ,

We discuss and give elementary proofs of results of Brion and of LawrenceVarchenko on the lattice-point enumerator generating functions for polytopes and cones. While this note is purely expository, its contains a new proof of Brion’s Theorem using irrational decompositions.

متن کامل

Symbolic computation of the Duggal transform

Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...

متن کامل

Adjoints, absolute values and polar decompositions

Various questions about adjoints, absolute values and polar decompositions of operators are addressed from a constructive point of view. The focus is on bilinear forms. Conditions are given for the existence of an adjoint, and a general notion of a polar decomposition is developed. The Riesz representation theorem is proved without countable choice.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005